The hard-hexagon model and Rogers-Ramanujan type identities.

نویسنده

  • G E Andrews
چکیده

In regime II of Baxter's solution of the hard-hexagon model [Baxter, R. J. (1980) J. Phys. A 13, L61-L70], he presents six conjectures identifying certain one-dimensional partition functions with infinite products. An outline of the proof of these conjectures is given here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Rogers-Ramanujan Type Identities

Polynomial generalizations of all 130 of the identities in Slater’s list of identities of the Rogers-Ramanujan type are presented. Furthermore, duality relationships among many of the identities are derived. Some of the these polynomial identities were previously known but many are new. The author has implemented much of the finitization process in a Maple package which is available for free do...

متن کامل

One-parameter Generalizations of Rogers-Ramanujan Type Identities

Resorting to the recursions satisfied by the polynomials which converge to the right hand sides of the Rogers-Ramanujan type identities given by Sills [17] and determinant method presented in [9], we obtain many new one-parameter generalizations of the Rogers-Ramanujan type identities, such as a generalization of the analytic versions of the first and second Göllnitz-Gordon partition identities...

متن کامل

Shifted versions of the Bailey and well-poised Bailey lemmas

The Bailey lemma is a famous tool to prove Rogers-Ramanujan type identities. We use shifted versions of the Bailey lemma to derive mversions of multisum Rogers-Ramanujan type identities. We also apply this method to the Well-Poised Bailey lemma and obtain a new extension of the Rogers-Ramanujan identities.

متن کامل

A Determinant Identity that Implies Rogers-Ramanujan

We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.

متن کامل

Tribasic Integrals and Identities of Rogers-ramanujan Type

Abstract. Some integrals involving three bases are evaluated as infinite products using complex analysis. Many special cases of these integrals may be evaluated in another way to find infinite sum representations for these infinite products. The resulting identities are identities of Rogers-Ramanujan type. Some integer partition interpretations of these identities are given. Generalizations of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 78 9  شماره 

صفحات  -

تاریخ انتشار 1981